【2022高考真题参考】2021年新高考全国Ⅰ卷数学试题【word精校版】

2021年普通高等学校招生全国统一考试

数学

本试卷共4页,22小题,满分150分。考试用时120分钟。

注意事项:1.答卷前,考生务必将自己的姓名、考生号、考场号和座位号填写在答题卡上。用2B铅笔将试卷类型(A)填涂在答题卡相应位置上。将条形码横贴在答题卡右上角“条形码粘贴处”。

2.作答选择题时,选出每小题答案后,用2B铅笔在答题卡上对应题目选项的答案信息点涂黑:如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试卷上。

3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。

4.考生必须保持答题卡的整洁。考试结束后,将试卷和答题卡一并交回。

一、选择题:本题共8小题,每小题5分,共40分。在每小题给出的四个选项中,只有一项是符合题目要求的。

1.设集合【2022高考真题参考】2021年新高考全国Ⅰ卷数学试题【word精校版】【2022高考真题参考】2021年新高考全国Ⅰ卷数学试题【word精校版】,则【2022高考真题参考】2021年新高考全国Ⅰ卷数学试题【word精校版】( )

A.【2022高考真题参考】2021年新高考全国Ⅰ卷数学试题【word精校版】B.【2022高考真题参考】2021年新高考全国Ⅰ卷数学试题【word精校版】C.【2022高考真题参考】2021年新高考全国Ⅰ卷数学试题【word精校版】D.【2022高考真题参考】2021年新高考全国Ⅰ卷数学试题【word精校版】

2.已知【2022高考真题参考】2021年新高考全国Ⅰ卷数学试题【word精校版】,则【2022高考真题参考】2021年新高考全国Ⅰ卷数学试题【word精校版】( )

A.【2022高考真题参考】2021年新高考全国Ⅰ卷数学试题【word精校版】B.【2022高考真题参考】2021年新高考全国Ⅰ卷数学试题【word精校版】C.【2022高考真题参考】2021年新高考全国Ⅰ卷数学试题【word精校版】D.【2022高考真题参考】2021年新高考全国Ⅰ卷数学试题【word精校版】

3.已知圆锥的底面半径为【2022高考真题参考】2021年新高考全国Ⅰ卷数学试题【word精校版】,其侧面展开图为一个半圆,则该圆锥的母线长为( )

A.2B.【2022高考真题参考】2021年新高考全国Ⅰ卷数学试题【word精校版】C.4D.【2022高考真题参考】2021年新高考全国Ⅰ卷数学试题【word精校版】

4.下列区间中,函数【2022高考真题参考】2021年新高考全国Ⅰ卷数学试题【word精校版】单调递增的区间是( )

A.【2022高考真题参考】2021年新高考全国Ⅰ卷数学试题【word精校版】B.【2022高考真题参考】2021年新高考全国Ⅰ卷数学试题【word精校版】C.【2022高考真题参考】2021年新高考全国Ⅰ卷数学试题【word精校版】D.【2022高考真题参考】2021年新高考全国Ⅰ卷数学试题【word精校版】

5.已知【2022高考真题参考】2021年新高考全国Ⅰ卷数学试题【word精校版】【2022高考真题参考】2021年新高考全国Ⅰ卷数学试题【word精校版】是椭圆【2022高考真题参考】2021年新高考全国Ⅰ卷数学试题【word精校版】【2022高考真题参考】2021年新高考全国Ⅰ卷数学试题【word精校版】的两个焦点,点【2022高考真题参考】2021年新高考全国Ⅰ卷数学试题【word精校版】【2022高考真题参考】2021年新高考全国Ⅰ卷数学试题【word精校版】上,则【2022高考真题参考】2021年新高考全国Ⅰ卷数学试题【word精校版】的最大值为( )

A.13B.12C.9D.6

6.若【2022高考真题参考】2021年新高考全国Ⅰ卷数学试题【word精校版】,则【2022高考真题参考】2021年新高考全国Ⅰ卷数学试题【word精校版】( )

A.【2022高考真题参考】2021年新高考全国Ⅰ卷数学试题【word精校版】B.【2022高考真题参考】2021年新高考全国Ⅰ卷数学试题【word精校版】C.【2022高考真题参考】2021年新高考全国Ⅰ卷数学试题【word精校版】D.【2022高考真题参考】2021年新高考全国Ⅰ卷数学试题【word精校版】

7.若过点【2022高考真题参考】2021年新高考全国Ⅰ卷数学试题【word精校版】可以作曲线【2022高考真题参考】2021年新高考全国Ⅰ卷数学试题【word精校版】的两条切线,则( )

A.【2022高考真题参考】2021年新高考全国Ⅰ卷数学试题【word精校版】B.【2022高考真题参考】2021年新高考全国Ⅰ卷数学试题【word精校版】C.【2022高考真题参考】2021年新高考全国Ⅰ卷数学试题【word精校版】D.【2022高考真题参考】2021年新高考全国Ⅰ卷数学试题【word精校版】

8.有6个相同的球,分别标有数字1,2,3,4,5,6,从中有放回的随机取两次,每次取1个球,甲表示事件“第一次取出的球的数字是1”,乙表示事件“第二次取出的球的数字是2”,丙表示事件“两次取出的球的数字之和是8”,丁表示事件“两次取出的球的数字之和是7”,则( )

A.甲与丙相互独立B.甲与丁相互独立

C.乙与丙相互独立D.丙与丁相互独立

二、选择题:本题共4小题,每小题5分,共20分。在每小题给出的选项中,有多项符合题目要求。全部选对的得5分,部分选对的得2分,有选错的得0分。

9.有一组样本数据【2022高考真题参考】2021年新高考全国Ⅰ卷数学试题【word精校版】【2022高考真题参考】2021年新高考全国Ⅰ卷数学试题【word精校版】,…,【2022高考真题参考】2021年新高考全国Ⅰ卷数学试题【word精校版】,由这组数据得到新样本数据【2022高考真题参考】2021年新高考全国Ⅰ卷数学试题【word精校版】【2022高考真题参考】2021年新高考全国Ⅰ卷数学试题【word精校版】,…,【2022高考真题参考】2021年新高考全国Ⅰ卷数学试题【word精校版】,其中【2022高考真题参考】2021年新高考全国Ⅰ卷数学试题【word精校版】【2022高考真题参考】2021年新高考全国Ⅰ卷数学试题【word精校版】),c为非零常数,则( )

A.两组样本数据的样本平均数相同

B.两组样本数据的样本中位数相同

C.两组样本数据的样本标准差相同

D.两组样数据的样本极差相同

10.已知【2022高考真题参考】2021年新高考全国Ⅰ卷数学试题【word精校版】为坐标原点,点【2022高考真题参考】2021年新高考全国Ⅰ卷数学试题【word精校版】【2022高考真题参考】2021年新高考全国Ⅰ卷数学试题【word精校版】【2022高考真题参考】2021年新高考全国Ⅰ卷数学试题【word精校版】【2022高考真题参考】2021年新高考全国Ⅰ卷数学试题【word精校版】,则( )

A.【2022高考真题参考】2021年新高考全国Ⅰ卷数学试题【word精校版】B.【2022高考真题参考】2021年新高考全国Ⅰ卷数学试题【word精校版】

C.【2022高考真题参考】2021年新高考全国Ⅰ卷数学试题【word精校版】D.【2022高考真题参考】2021年新高考全国Ⅰ卷数学试题【word精校版】

11.已知点【2022高考真题参考】2021年新高考全国Ⅰ卷数学试题【word精校版】在圆【2022高考真题参考】2021年新高考全国Ⅰ卷数学试题【word精校版】上,点【2022高考真题参考】2021年新高考全国Ⅰ卷数学试题【word精校版】【2022高考真题参考】2021年新高考全国Ⅰ卷数学试题【word精校版】,则( )

A.点【2022高考真题参考】2021年新高考全国Ⅰ卷数学试题【word精校版】到直线【2022高考真题参考】2021年新高考全国Ⅰ卷数学试题【word精校版】的距离小于10

B.点【2022高考真题参考】2021年新高考全国Ⅰ卷数学试题【word精校版】到直线【2022高考真题参考】2021年新高考全国Ⅰ卷数学试题【word精校版】的距离大于2

C.当【2022高考真题参考】2021年新高考全国Ⅰ卷数学试题【word精校版】最小时,【2022高考真题参考】2021年新高考全国Ⅰ卷数学试题【word精校版】

D.当【2022高考真题参考】2021年新高考全国Ⅰ卷数学试题【word精校版】最大时,【2022高考真题参考】2021年新高考全国Ⅰ卷数学试题【word精校版】

12.在正三棱柱【2022高考真题参考】2021年新高考全国Ⅰ卷数学试题【word精校版】中,【2022高考真题参考】2021年新高考全国Ⅰ卷数学试题【word精校版】,点【2022高考真题参考】2021年新高考全国Ⅰ卷数学试题【word精校版】满足【2022高考真题参考】2021年新高考全国Ⅰ卷数学试题【word精校版】,其中【2022高考真题参考】2021年新高考全国Ⅰ卷数学试题【word精校版】【2022高考真题参考】2021年新高考全国Ⅰ卷数学试题【word精校版】,则( )

A.当【2022高考真题参考】2021年新高考全国Ⅰ卷数学试题【word精校版】时,【2022高考真题参考】2021年新高考全国Ⅰ卷数学试题【word精校版】的周长为定值

B.当【2022高考真题参考】2021年新高考全国Ⅰ卷数学试题【word精校版】时,三棱锥【2022高考真题参考】2021年新高考全国Ⅰ卷数学试题【word精校版】的体积为定值

C.当【2022高考真题参考】2021年新高考全国Ⅰ卷数学试题【word精校版】时,有且仅有一个点【2022高考真题参考】2021年新高考全国Ⅰ卷数学试题【word精校版】,使得【2022高考真题参考】2021年新高考全国Ⅰ卷数学试题【word精校版】

D.当【2022高考真题参考】2021年新高考全国Ⅰ卷数学试题【word精校版】时,有且仅有一个点【2022高考真题参考】2021年新高考全国Ⅰ卷数学试题【word精校版】,使得【2022高考真题参考】2021年新高考全国Ⅰ卷数学试题【word精校版】平面【2022高考真题参考】2021年新高考全国Ⅰ卷数学试题【word精校版】

三、填空题:本题共4小题,每小题5分,共20分。

13.已知函数【2022高考真题参考】2021年新高考全国Ⅰ卷数学试题【word精校版】是偶函数,则【2022高考真题参考】2021年新高考全国Ⅰ卷数学试题【word精校版】______.

14.已知【2022高考真题参考】2021年新高考全国Ⅰ卷数学试题【word精校版】为坐标原点,抛物线【2022高考真题参考】2021年新高考全国Ⅰ卷数学试题【word精校版】【2022高考真题参考】2021年新高考全国Ⅰ卷数学试题【word精校版】【2022高考真题参考】2021年新高考全国Ⅰ卷数学试题【word精校版】)的焦点为【2022高考真题参考】2021年新高考全国Ⅰ卷数学试题【word精校版】【2022高考真题参考】2021年新高考全国Ⅰ卷数学试题【word精校版】【2022高考真题参考】2021年新高考全国Ⅰ卷数学试题【word精校版】上一点,【2022高考真题参考】2021年新高考全国Ⅰ卷数学试题【word精校版】【2022高考真题参考】2021年新高考全国Ⅰ卷数学试题【word精校版】轴垂直,【2022高考真题参考】2021年新高考全国Ⅰ卷数学试题【word精校版】【2022高考真题参考】2021年新高考全国Ⅰ卷数学试题【word精校版】轴上一点,且【2022高考真题参考】2021年新高考全国Ⅰ卷数学试题【word精校版】.若【2022高考真题参考】2021年新高考全国Ⅰ卷数学试题【word精校版】,则【2022高考真题参考】2021年新高考全国Ⅰ卷数学试题【word精校版】的准线方程为______.

15.函数【2022高考真题参考】2021年新高考全国Ⅰ卷数学试题【word精校版】的最小值为______.

16.某校学生在研究民间剪纸艺术时,发现剪纸时经常会沿纸的某条对称轴把纸对折.规格为【2022高考真题参考】2021年新高考全国Ⅰ卷数学试题【word精校版】的长方形纸,对折1次共可以得到【2022高考真题参考】2021年新高考全国Ⅰ卷数学试题【word精校版】【2022高考真题参考】2021年新高考全国Ⅰ卷数学试题【word精校版】两种规格的图形,它们的面积之和【2022高考真题参考】2021年新高考全国Ⅰ卷数学试题【word精校版】,对折2次共可以得到【2022高考真题参考】2021年新高考全国Ⅰ卷数学试题【word精校版】【2022高考真题参考】2021年新高考全国Ⅰ卷数学试题【word精校版】【2022高考真题参考】2021年新高考全国Ⅰ卷数学试题【word精校版】三种规格的图形,它们的面积之和【2022高考真题参考】2021年新高考全国Ⅰ卷数学试题【word精校版】,以此类推.则对折4次共可以得到不同规格图形的种数为______;如果对折【2022高考真题参考】2021年新高考全国Ⅰ卷数学试题【word精校版】次,那么【2022高考真题参考】2021年新高考全国Ⅰ卷数学试题【word精校版】______【2022高考真题参考】2021年新高考全国Ⅰ卷数学试题【word精校版】.

四、解答题:本题共6小题,共70分。解答应写出文字说明、证明过程或演算步骤。

17.(10分)

已知数列【2022高考真题参考】2021年新高考全国Ⅰ卷数学试题【word精校版】满足【2022高考真题参考】2021年新高考全国Ⅰ卷数学试题【word精校版】【2022高考真题参考】2021年新高考全国Ⅰ卷数学试题【word精校版】

(1)记【2022高考真题参考】2021年新高考全国Ⅰ卷数学试题【word精校版】,写出【2022高考真题参考】2021年新高考全国Ⅰ卷数学试题【word精校版】【2022高考真题参考】2021年新高考全国Ⅰ卷数学试题【word精校版】,并求数列【2022高考真题参考】2021年新高考全国Ⅰ卷数学试题【word精校版】的通项公式;

(2)求【2022高考真题参考】2021年新高考全国Ⅰ卷数学试题【word精校版】的前20项和.

18.(12分)

某学校组织“一带一路”知识竞赛,有A,B两类问题.每位参加比赛的同学先在两类问题中选择一类并从中随机抽取一个问题回答,若回答错误则该同学比赛结束;若回答正确则从另一类问题中再随机抽取一个问题回答,无论回答正确与否,该同学比赛结束.A类问题中的每个问题回答正确得20分,否则得0分;B类问题中的每个问题回答正确得80分,否则得0分.

己知小明能正确回答A类问题的概率为0.8,能正确回答B类问题的概率为0.6,且能正确回答问题的概率与回答次序无关.

(1)若小明先回答A类问题,记【2022高考真题参考】2021年新高考全国Ⅰ卷数学试题【word精校版】为小明的累计得分,求【2022高考真题参考】2021年新高考全国Ⅰ卷数学试题【word精校版】的分布列;

(2)为使累计得分的期望最大,小明应选择先回答哪类问题?并说明理由.

19.(12分)

【2022高考真题参考】2021年新高考全国Ⅰ卷数学试题【word精校版】是内角【2022高考真题参考】2021年新高考全国Ⅰ卷数学试题【word精校版】【2022高考真题参考】2021年新高考全国Ⅰ卷数学试题【word精校版】【2022高考真题参考】2021年新高考全国Ⅰ卷数学试题【word精校版】的对边分别为【2022高考真题参考】2021年新高考全国Ⅰ卷数学试题【word精校版】【2022高考真题参考】2021年新高考全国Ⅰ卷数学试题【word精校版】【2022高考真题参考】2021年新高考全国Ⅰ卷数学试题【word精校版】.已知【2022高考真题参考】2021年新高考全国Ⅰ卷数学试题【word精校版】,点【2022高考真题参考】2021年新高考全国Ⅰ卷数学试题【word精校版】在边【2022高考真题参考】2021年新高考全国Ⅰ卷数学试题【word精校版】上,【2022高考真题参考】2021年新高考全国Ⅰ卷数学试题【word精校版】.

(1)证明:【2022高考真题参考】2021年新高考全国Ⅰ卷数学试题【word精校版】

(2)若【2022高考真题参考】2021年新高考全国Ⅰ卷数学试题【word精校版】,求【2022高考真题参考】2021年新高考全国Ⅰ卷数学试题【word精校版】.

20.(12分)

如图,在三棱锥【2022高考真题参考】2021年新高考全国Ⅰ卷数学试题【word精校版】中,平面【2022高考真题参考】2021年新高考全国Ⅰ卷数学试题【word精校版】平面【2022高考真题参考】2021年新高考全国Ⅰ卷数学试题【word精校版】【2022高考真题参考】2021年新高考全国Ⅰ卷数学试题【word精校版】【2022高考真题参考】2021年新高考全国Ⅰ卷数学试题【word精校版】【2022高考真题参考】2021年新高考全国Ⅰ卷数学试题【word精校版】的中点.

【2022高考真题参考】2021年新高考全国Ⅰ卷数学试题【word精校版】

(1)证明:【2022高考真题参考】2021年新高考全国Ⅰ卷数学试题【word精校版】

(2)若【2022高考真题参考】2021年新高考全国Ⅰ卷数学试题【word精校版】是边长为1的等边三角形,点【2022高考真题参考】2021年新高考全国Ⅰ卷数学试题【word精校版】在棱【2022高考真题参考】2021年新高考全国Ⅰ卷数学试题【word精校版】上,【2022高考真题参考】2021年新高考全国Ⅰ卷数学试题【word精校版】,且二面角【2022高考真题参考】2021年新高考全国Ⅰ卷数学试题【word精校版】的大小为【2022高考真题参考】2021年新高考全国Ⅰ卷数学试题【word精校版】,求三棱锥【2022高考真题参考】2021年新高考全国Ⅰ卷数学试题【word精校版】的体积.

21.(12分)

在平面直角坐标系【2022高考真题参考】2021年新高考全国Ⅰ卷数学试题【word精校版】中,已知点【2022高考真题参考】2021年新高考全国Ⅰ卷数学试题【word精校版】【2022高考真题参考】2021年新高考全国Ⅰ卷数学试题【word精校版】,点【2022高考真题参考】2021年新高考全国Ⅰ卷数学试题【word精校版】满足【2022高考真题参考】2021年新高考全国Ⅰ卷数学试题【word精校版】.记【2022高考真题参考】2021年新高考全国Ⅰ卷数学试题【word精校版】的轨迹为【2022高考真题参考】2021年新高考全国Ⅰ卷数学试题【word精校版】.

(1)求【2022高考真题参考】2021年新高考全国Ⅰ卷数学试题【word精校版】的方程;

(2)设点【2022高考真题参考】2021年新高考全国Ⅰ卷数学试题【word精校版】在直线【2022高考真题参考】2021年新高考全国Ⅰ卷数学试题【word精校版】上,过【2022高考真题参考】2021年新高考全国Ⅰ卷数学试题【word精校版】的两条直线分别交【2022高考真题参考】2021年新高考全国Ⅰ卷数学试题【word精校版】【2022高考真题参考】2021年新高考全国Ⅰ卷数学试题【word精校版】【2022高考真题参考】2021年新高考全国Ⅰ卷数学试题【word精校版】两点和【2022高考真题参考】2021年新高考全国Ⅰ卷数学试题【word精校版】【2022高考真题参考】2021年新高考全国Ⅰ卷数学试题【word精校版】两点,且【2022高考真题参考】2021年新高考全国Ⅰ卷数学试题【word精校版】,求直线【2022高考真题参考】2021年新高考全国Ⅰ卷数学试题【word精校版】的斜率与直线【2022高考真题参考】2021年新高考全国Ⅰ卷数学试题【word精校版】的斜率之和.

22.(12分)

已知函数【2022高考真题参考】2021年新高考全国Ⅰ卷数学试题【word精校版】.

(1)讨论【2022高考真题参考】2021年新高考全国Ⅰ卷数学试题【word精校版】的单调性;

(2)设【2022高考真题参考】2021年新高考全国Ⅰ卷数学试题【word精校版】【2022高考真题参考】2021年新高考全国Ⅰ卷数学试题【word精校版】为两个不相等的正数,且【2022高考真题参考】2021年新高考全国Ⅰ卷数学试题【word精校版】,证明:【2022高考真题参考】2021年新高考全国Ⅰ卷数学试题【word精校版】.

扫码关注学科网数学服务号,第一时间获取2021年高考真题、答案、解析

【2022高考真题参考】2021年新高考全国Ⅰ卷数学试题【word精校版】

来源:2022高考信息
首页点赞

高考相关内容

高考备考专题

高考最新文章

新高考-2022高考信息-2022高考综合-【2022高考真题参考】2021年新高考全国Ⅰ卷数学试题【word精校版】

没有更多了~去看看其他高考内容吧

网站首页网站地图返回顶部