【导语】在学习新知识的同时还要复习以前的旧知识,肯定会累,所以要注意劳逸结合。只有充沛的精力才能迎接新的挑战,才会有事半功倍的学习。更三高考高二频道为你整理了《高二年级数学必修三教案》希望对你的学习有所帮助!
高二年级数学必修三教案(一)
1.预习教材,问题导入根据以下提纲,预习教材P54~P57,回答下列问题.
(1)在教材P55的“探究”中,怎样获得样本?
提示:将这批小包装饼干放入一个不透明的袋子中,搅拌均匀,然后不放回地摸取.
(2)最常用的简单随机抽样方法有哪些?
提示:抽签法和随机数法.
(3)你认为抽签法有什么优点和缺点?
提示:抽签法的优点是简单易行,当总体中个体数不多时较为方便,缺点是当总体中个体数较多时不宜采用.
(4)用随机数法读数时可沿哪个方向读取?
提示:可以沿向左、向右、向上、向下等方向读数.
2.归纳总结,核心必记
(1)简单随机抽样:一般地,设一个总体含有N个个体,从中逐个不放回地抽取n个个体作为样本(n≤N),如果每次抽取时总体内的各个个体被抽到的机会都相等,就把这种抽样方法叫做简单随机抽样.
(2)最常用的简单随机抽样方法有两种——抽签法和随机数法.
(3)一般地,抽签法就是把总体中的N个个体分段,把号码写在号签上,将号签放在一个容器中,搅拌均匀后,每次从中抽取一个号签,连续抽取n次,就得到一个容量为n的样本.
(4)随机数法就是利用随机数表、随机数骰子或计算机产生的随机数进行抽样.
(5)简单随机抽样有操作简便易行的优点,在总体个数不多的情况下是行之有效的.
[问题思考]
(1)在简单随机抽样中,某一个个体被抽到的可能性与第几次被抽到有关吗?
提示:在简单随机抽样中,总体中的每个个体在每次抽取时被抽到的可能性相同,与第几次被抽到无关.
(2)抽签法与随机数法有什么异同点?
提示:
相同点①都属于简单随机抽样,并且要求被抽取样本的
总体的个体数有限;
②都是从总体中逐个不放回地进行抽取
不同点①抽签法比随机数法操作简单;
②随机数法更适用于总体中个体数较多的时候,而抽签法适用于总体中个体数较少的情况,所以当总体中的个体数较多时,应当选用随机数法,可以节约大量的人力和制作号签的成本
高二年级数学必修三教案(二)
[核心必知]
1.预习教材,问题导入
根据以下提纲,预习教材P2~P5,回答下列问题.
(1)对于一般的二元一次方程组a1x+b1y=c1,①a2x+b2y=c2,②其中a1b2-a2b1≠0,如何写出它的求解步骤?
提示:分五步完成:
第一步,①×b2-②×b1,得(a1b2-a2b1)x=b2c1-b1c2,③
第二步,解③,得x=b2c1-b1c2a1b2-a2b1.
第三步,②×a1-①×a2,得(a1b2-a2b1)y=a1c2-a2c1,④
第四步,解④,得y=a1c2-a2c1a1b2-a2b1.
第五步,得到方程组的解为x=b2c1-b1c2a1b2-a2b1,y=a1c2-a2c1a1b2-a2b1.
(2)在数学中算法通常指什么?
提示:在数学中,算法通常是指按照一定规则解决某一类问题的明确和有限的步骤.
2.归纳总结,核心必记
(1)算法的概念
12世纪的算法指的是用阿拉伯数字进行算术运算的过程续表
数学中的算法通常是指按照一定规则解决某一类问题的明确和有限的步骤
现代算法通常可以编成计算机程序,让计算机执行并解决问题
(2)设计算法的目的
计算机解决任何问题都要依赖于算法.只有将解决问题的过程分解为若干个明确的步骤,即算法,并用计算机能够接受的“语言”准确地描述出来,计算机才能够解决问题.
[问题思考]
(1)求解某一个问题的算法是否是的?
提示:不是.
(2)任何问题都可以设计算法解决吗?
提示:不一定.