初中数学知识点总结 实数

初中数学七年级下册知识点:实数一、实数的分类

1、按定义分类

2、按性质符号分类

注:0既不是正数也不是负数

二、实数的相关概念

1、相反数

(1)代数意义:只有符号不同的两个数,我们说其中一个是另一个的相反数、0的相反数是0。

(2)几何意义:在数轴上原点的两侧,与原点距离相等的两个点表示的两个数互为相反数,或数轴上,互为相反数的两个数所对应的点关于原点对称。

(3)互为相反数的两个数之和等于0、a、b互为相反数 a+b=0。

2、绝对值 |a|≥0、

3、倒数 (1)0没有倒数 (2)乘积是1的两个数互为倒数、a、b互为倒数 。

4、平方根

(1)如果一个数的平方等于a,这个数就叫做a的平方根、一个正数有两个平方根,它们互为相反数;0有一个平方根,它是0本身;负数没有平方根。a(a≥0)的平方根记作。

(2)一个正数a的正的平方根,叫做a的算术平方根、a(a≥0)的算术平方根记作。

5、立方根

如果x3=a,那么x叫做a的立方根、一个正数有一个正的立方根;一个负数有一个负的立方根;零的立方根是零。

三、实数与数轴

数轴定义:规定了原点,正方向和单位长度的直线叫做数轴,数轴的三要素缺一不可。

四、实数大小的比较

1、对于数轴上的任意两个点,靠右边的点所表示的数较大。

2、正数都大于0,负数都小于0,两个正数,绝对值较大的那个正数大;两个负数;绝对值大的反而小。

3、无理数的比较大小:

五、实数的运算

1、加法

同号两数相加,取相同的符号,并把绝对值相加;绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值;互为相反数的两个数相加得0;一个数同0相加,仍得这个数。

2、减法:减去一个数等于加上这个数的相反数。

3、乘法

几个非零实数相乘,积的符号由负因数的个数决定,当负因数有偶数个时,积为正;当负因数有奇数个时,积为负、几个数相乘,有一个因数为0,积就为0。

4、除法

除以一个数,等于乘上这个数的倒数、两个数相除,同号得正,异号得负,并把绝对值相除、0除以任何一个不等于0的数都得0。

5、乘方与开方

(1)an所表示的意义是n个a相乘,正数的任何次幂是正数,负数的偶次幂是正数,负数的奇次幂是负数、

(2)正数和0可以开平方,负数不能开平方;正数、负数和0都可以开立方。

(3)零指数与负指数

六、有效数字和科学记数法

1、有效数字:

一个近似数,从左边第一个不是0的数字起,到精确到的数位为止,所有的数字,都叫做这个近似数的有效数字、

2、科学记数法:

把一个数用 (1≤ <10,n为整数)的形式记数的方法叫科学记数法。

来源:网络数据
首页点赞

高考相关内容

高考备考专题

高考最新文章

相交线的性质

相交线的性质

相交线的性质

不等式的运用

不等式的运用

不等式的运用

解二元一次方程组——消元

解二元一次方程组——消元

解二元一次方程组——消元

为什么√2不是有理数

为什么√2不是有理数

为什么√2不是有理数

平行线的性质

平行线的性质

平行线的性质

角的定义与区别

角的定义与区别

角的定义与区别

直线,射线,线段的区别

直线,射线,线段的区别

直线,射线,线段的区别

什么是几何图形?

什么是几何图形?

什么是几何图形?

常用三角函数公式梳理

常用三角函数公式梳理

常用三角函数公式梳理

一元一次方程及应用题

一元一次方程及应用题

一元一次方程及应用题
新高考-中考频道-初中数学-初中数学知识点总结 实数

没有更多了~去看看其他高考内容吧

网站首页网站地图返回顶部